BE

Back To Basics
Functions
MIKE SHAH
Cppcon 20 A“A

The C++ Conference 2 3 October 01 - 06

ANl social: @MichaelShah
cnn 2023 A‘A Web: mshah.io
Al Courses: courses.mshah.io
pp October01-06 \ Rveiee

The C++ Conference | AUTOIQ, Eujnmdu, USA www . youtube . com/c/MikeShah

Back To Basics oozt 3 5003
Fu nCtionS Zf[)gtlpci)gﬂzc:%gry Audience

MIKE SHAH

Cppcon 20 AN
The C++ Conference 2 3 October 01 - 06

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Social: @MichaelShah

W YouTube:
The C++ Conference | Aurorg, Calorado, USA B . youtube . com/c/MikeShah

Back To Basics oozt 3 5003
Fu nCtionS %gtlpggﬂgigry Audience

If you've been programming C++

for many years -- please provide
suggestions, analogies, and other MIKE SHAH

useful ways to think about

BX
@ ppcnn 2023 A‘A Web: mshah.io
T Il M Courses: courses.mshah.io

functions now or in the future!

Cppcon 20 AN
The C++ Conference 2 3 October 01 - 06

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Please do not redistribute slides without prior
permission.

Your Tour Guide for Today

by Mike Shah

Associate Teaching Professor at Northeastern University in Boston,

Massachusetts.
o lteach courses in computer systems, computer graphics, and game engine development.
o My research in program analysis is related to performance building static/dynamic analysis
and software visualization tools.

| do consulting and technical training on modern C++, DLang,
Concurrency, OpenGL, and Vulkan projects

o (Usually graphics or games related)
| like teaching, guitar, running, weight training, and anything in computer
science under the domain of computer graphics, visualization,
concurrency, and parallelism.
Contact information and more on: www.mshah.io

More online training at and

http://www.mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Code for the talk

e Located here: https://github.com/MikeShah/Talks/tree/main/2023/cppcon/functions

Talks / 2023 / cppcon / functions / (&

° MikeShah Create readme.md

Name

[readme.md

https://github.com/MikeShah/Talks/tree/main/2023/cppcon/functions

@ R} The abstract that you read and enticed you to join me is here!

The C++ Conference

Abstract

Functions are one of the first things programmers learn, granting you the ultimate power to 'reuse’ code and build
modular programs. In this talk, we are going to provide an overview of functions from the start to the end, on the
various powers that are given to us from the ground up. Consider this talk your one stop for learning all of the great
things about functions!

We'll start with a basic function example, identifying the function signature and basic abilities of a function. Then we
are going to view this function again from the perspective of assembly (using compiler explorer) to show you how a
function is structured. From the assembly view, we will then observe that functions have addresses (they must after
all') and that we can store functions in pointers. We'll take a brief aside to show you how modern C++ also gives us
the convenient std::function. Functions need not always be 'global’ building blocks of our programs, the next step in
our journey will be to see how we can have functions at local scope (e.g. lambda's) and how they can be used (and
oftentimes in handy ways in the STL). Ah, intrigued are you? We're not quite done! Now with building blocks such as
lambda's (and related functors) we can utilize function composition to really unlock the power of functions. Towards
the end of this talk, we will talk about grouping related functions (into namespaces) and as member functions in
classes. Within our discussion of functions in classes, we'll touch on virtual functions, static functions, and operator
overloading. We'll circle back to where we began on these topics, again showing you the assembly. At the end of this
talk, you will have had FUN with functions (I couldn't resist...but you will see the complete C++ picture of functions).

Back to Basics: C++ Tour of Functions

e This talk part of the Back to Basics
track in which we revisit fundamental

ideas of programming and C++.
o Today we will be talking about Functions
m We'll start from the basics (what is
a function) and ramp up to more
specific C++ usage of functions
towards the end.

https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIyLTA1L2pvYjcxMC0wNTMuanBn.jpg

Functions

A familiar term -- perhaps from your math class?

Mathematical Functions (f (Xx)=X) «

e Functions on graphs are one domain many

begin to think of the term function.
o Afunction takes 0 or more inputs
m f(x) means ‘X’ is the input representing a real
number
o Based on the inputs, an output is generated
(dependent variable)
m In the case of: f(x) =x we return ‘X’

'
N

11

Functions on graphs are one domain many

begin to think of the term function.
o Afunction takes 0 or more inputs
m f(x) means ‘X’ is the input representing a real
number
o Based on the inputs, an output is generated
(dependent variable)
m In the case of: f(x) =x we return ‘X’

Piecewise functions get more interesting

because we can add conditions
o Observe f(x) is evaluated with x?> when x>0.
o Otherwise, we generate a value of -1

In programming languages:

o We have quite a lot of expressiveness in regards to

how we express a functions operations!

12

Common Math Functions (1/2)

e As a start, as you may expect,
languages like C++ provide in the
standard library many common
functions for us.

Common mathematical functions

Functions

Defined in header <cstdlib>

Defined in header <cmath>

B RN CRNC)

f(x) = sin(x)

f (x) = cos()

7

f(x):sin(x)2+cos(x)"2 \ /X\ /x\
SO TN

Trigonometric functions

sin
sinf (C++11)
sinl (C++11)

cos
cosf (C++11)
cosl (C++11)

tan
tanf (C++11)
tanl (C++11)

asin
asinf (C++11)
asinl (C++11)

acos
acosf (C++11)
acosl (C++11)

computes sine (sin x)
(function)

computes cosine (COS)
(function)

computes tangent (tan x)
(function)

computes arc sine (arcsin x)
(function)

computes arc cosine (arccos x)
(function)

https://en.cppreference.com/w/cpp/numeric/math

13

https://en.cppreference.com/w/cpp/numeric/math

Functions in programming
languages are used to
express math and more
exciting ideas!

14

https://en.cppreference.com/w/cpp/numeric/math

Origin Story: A Journey of Discovery

The magic and power of functions!

https://www.thegamecreators.com/product/dark-basic-pro-open-source

https://www.thegamecreators.com/product/dark-basic-pro-open-source

Origin Story:Let's Give some Credit

| started my journey in various
BASIC programming languages
Dark Basic Pro (DBP) (a game
engine and BASIC programming
language) was instrumental in my
start in getting excited about
programming

o (And later informed my decision to study

computer science)

| can still remember reading the
programming manuals that came
with my installation CD

Write incredible e 3D Games Appll: ation
and Prosentatin ns With Eas;

-

]

g

-
&7
e g
ns

| =
EE
‘ Next Generation Games Development
h ORICE BUMP MAFFING = POINT SPRITES < FICIL AND mlnmtumu’ m.;::o"!:i"w
N i SIMD.:G ‘m'ﬂﬂmll:g‘lu:" E::: ll?u{?l TOTUENG

FREE! FREE! FREF! FREE! FREE! FREE! mm FREE!

= . RFTSPACE v Chue i Iﬂ e

cowbat hmalariin

Professional

Origialty seid fer 51999

16

A Monumental Moment! (1/3)

| remember learning about loops
(Using goto and do/loop)

(@)

Wow -- | can save myself repeating
typing of code!

A GOTO command, however does not remember from where it jumped and will
continue running from its new location permanently. It is not recommended you
use GOTO commands often, as there are better ways to control the flow of your
programs. Here is an example, however, of a simple GOTO command:

MyLabel:
PRINT "Hello World ";
GOTO MyLabel

Or alternatively:

DO
PRINT "Hello World ";
LOOP

You will agree the last example is a much better, cleaner and friendly way of
doing the above and demonstrates how the use of GOTO can be eliminated. GOTO
is retained in the DARK BASIC language for compatibility with older BASIC
languages.

17

| remember learning about loops
(Using goto and do/loop)

(@)

| also remember finding a giant list of

Wow -- | can save myself repeating
typing of code!

interesting graphics functions
Neat -- something different than the
math functions I’m learning in school

(@)

Sounds like | can do some
interesting stuff!

A GOTO command, however does not remember from where it jumped and will
continue running from its new location permanently. It is not recommended you
use GOTO commands often, as there are better ways to control the flow of your
programs. Here is an example, however, of a simple GOTO command:

MyLabel:
PRINT "Hello World ";
GOTO MyLabel

Or alternatively:

DO
PRINT "Hello World ";
LOOP

You will agree the last example is a much better, cleaner and friendly way of
doing the above and demonstrates how the use of GOTO can be eliminated. GOTO
is retained in the DARK BASIC language for compatibility with older BASIC
languages.

Functions can be described as commands that return a value. DARK BASIC uses
arithmetic functions, string functions, command specific functions and user-
defined functions. They all share commonalties that will help you recognize
what they look like and how they are used.

A simple arithmetic function is the ABS command, which takes a negative value
and converts it to positive:

PRINT ABS(-100) will print 100 as the result of the function
The same function can be used in a calculation:

A = B + ABS(-100)
Or used with a variable:

A = ABS(B)
Or used as part of a conditional expression:

IF ABS(A) > 180 THEN PRINT "ok"

18

e | remember learning about loops
o (Using goto and do/loop)

m Wow -- | can save myself repeating

typing of code!

e | also remember finding a giant list of

interesting graphics functions
o Neat -- something different than the

math functions I’m learning in school

m Sounds like | can do some
interesting stuff!

A GOTO command, however does not remember from where it jumped and will
continue running from its new location permanently. It is not recommended you
use GOTO commands often, as there are better ways to control the flow of your
programs. Here is an example, however, of a simple GOTO command:

MyLabel:
PRINT "Hello World ";
GOTO MyLabel

Or alternatively:

DO
PRINT "Hello World ";
LOOP

You will agree the last example is a much better, cleaner and friendly way of
doing the above and demonstrates how the use of GOTO can be eliminated. GOTO
is retained in the DARK BASIC language for compatibility with older BASIC
languages.

Note: Loops and functions are helping achieve code
reuse, slightly different abstractions, but both serving
as building blocks to implement algorithms.

Functions can be described as commands that return a value. DARK BASIC uses
arithmetic functions, string functions, command specific functions and user-
defined functions. They all share commonalties that will help you recognize
what they look like and how they are used.

A simple arithmetic function is the ABS command, which takes a negative value
and converts it to positive:

PRINT ABS(-100) will print 100 as the result of the function
The same function can be used in a calculation:

A = B + ABS(-100)
Or used with a variable:

A = ABS(B)
Or used as part of a conditional expression:

IF ABS(A) > 180 THEN PRINT "ok"

19

Example Bitmap Functions

All of these functions are related to
operating on ‘bitmap images’ -- they
are a provided common set of

functions
o Load Bitmap Filename
o Load Bitmap Filename, Bitmap Number
o Set Current Bitmap Bitmap Number
m efc.

Bitmap Command Set

Bitmap files that are stored in the BMP format can be loaded using the bitmap
command set. You can load or create up to 32 bitmaps for use in your programs.
Bitmaps are mainly used to hide graphics off-screen for storage and
manipulation. You are also able to copy, mirror, flip, blur, fade and save
your bitmaps to give you full control over graphics handling.

LOAD BITMAP

This command loads a BMP bitmap file to the screen. You can optionally provide
a Bitmap Number between 1 and 32. Once you have loaded the bitmap file
successfully, you can use the specified bitmap number to modify and manage the
bitmap. The bitmap number should be specified using an integer value.

SYNTAX:
LOAD BITMAP Filename
LOAD BITMAP Filename, Bitmap Number

CREATE BITMAP

This command will create a blank bitmap of a specified size. The size of the
bitmap is only limited by the amount of system memory available. When you
create a bitmap, it becomes the current bitmap. All drawing operations will be
re-directed to the current bitmap and away from the screen. You can use the
SET CURRENT BITMAP command to restore drawing operations to the screen. The
parameters should be specified using integer values.

SYNTAX:
CREATE BITMAP Bitmap Number, Width, Height

SET CURRENT BITMAP

This command will set the current bitmap number for all drawing operations..
Use this command if you wish to draw, paste and extract images from the
bitmap. Setting the current bitmap to zero points all drawing operations to
the screen. The parameter should be specified using an integer value.

SYNTAX:
SET CURRENT BITMAP Bitmap Number

Functions can be described as commands that return a value. DARK BASIC uses
arithmetic functions, string functions, command specific functions and user-
defined functions. They all share commonalties that will help you recognize

what they look like and how they are used.

A simple arithmetic function is the ABS command, which s a negative value

and converts it to positive:
PRINT ABS(-100) will print 100 as the result of the funct
The same function can be used in a calculation:
A = B + ABS(-100)
Or used with a variable:
A = ABS(B)
Or used as part of a conditional expression:

IF ABS(A) > 180 THEN PRINT "ok"

Again, from the
manual --
keying in on this
Insight that
functions are a
way to group
related code

21

Wow! | can write my own functions?

More Insights The limit is our iMagination wsperss s

USER DEFINED FUNCTIONS

—

There will come a time when the ability to create your own functions will be
priceless. Experienced programmers would not be able to write effective code
without them. Although GOSUB commands and subroutines have been provided for
compatibility and learning, it is expected that you will progress to use
functions as soon as possible.

Functions are blocks of commands that usually perform a recursive or isolated
task that is frequently used by your program. Variables and arrays used within
the function are isolated from the rest of the program. If you use a variable
name of FRED in your function, it will not affect another variable called FRED
in your main program, noxr any other function that happens to use a similar
variable name. This may seem to be a restriction, but forces you to think
about cutting up your program into exclusive tasks which is a very important
lesson.

22

Capturing a Few Fundamental ldeas From my Origin Story

e From my initial discovery of functions -- | found a few interesting facts about

functions and how to think about them.
o Let’s explore further!

Functions can be described as commands that return a value.

All of these functions are related to
operating on ‘bitmap images’ -- they
are a provided common set of
functions

There will come a time when the ability to create your own functions will be
priceless.

23

Functions
An Abstraction for Writing Reusable and Modular Code

At the very minimum -- “a command that returns a value”

General Purpose of a Function in a programming language (1/2)

e Some functions purely run a routine of ,
code -- no return value. void prompt(void){

o prompt() on the right is an example A std::cout << :
m void is the return type when nothing is 3 std::cout << -
std::cout << << Std::endl;

returned.
o Note: Other languages sometimes distinguish
explicitly and name these procedures or
subroutines

}

25

https://en.cppreference.com/w/cpp/numeric/random/rand

NN

Some functions purely run a routine of

code -- no return value.
o prompt() on the right is an example
m void is the return type when nothing is
returned.
o Note: Other languages sometimes distinguish
explicitly and name these procedures or
subroutines

Some functions compute a new value
from O or more inputs.
o int square(int x) on the rightis an
example function

o std::randis an example that takes no
inputs and produces an output.

Some functions mutate a given input

and/or output
o i.e.transforming data

(@) ®)]

void prompt(void
std::cout << -
std::cout << -
std::cout << << std::endl;

00

0 }

2
-

S

oy N

C

int square(int x)({
return x*x;
}

el

0

26

https://en.cppreference.com/w/cpp/numeric/random/rand

Function Anatomy

The pieces that make up a function

Function Basics - Parts of a Function (1/6)

6 int LoadBitmapFile(std::string image){

e |et’s take a look at how to

_ 7/ int result = -1;
create a function, and the 8
different components of a 9 (/[load file logichherer.-:
function. 10

11 return result;
12 }

28

Functions must have a
name;

The name should describe
‘what’ the function is doing
at a minimum

int result

// ...Load file logic here

return result;

Some naming rules:

Functions names must start with a letter or underscore.
Note: ‘Usually’ names that begin with an underscore are
reserved for something special -- the underscore
intentionally making it harder to type.

29

The next part of a function 6 int LoadBitmapFilelstd::string image){
are the parameters of the >]
function (i.e. the ‘input’)

7 pr = =

// ...Load file logic here

Functions can have zero or 1;) AR SRR
more inputs.

Notes on function parameters:

i . e Functions names must start with a letter or underscore.
This function has exaCtly e Note: Sometimes the term parameter and argument ge
one parameter of type mixed up

o parameters are part of the definition
o arguments are the values we supply when we
actually use the function.

std::string

30

Next we have the ‘return

type’ -- this tells us the 3

type of the value returned. 9 // ...Load file logic here
10

Functions return at most 1 |**

value (The type is ‘void’ if R
we return no Va|ues)_ Notes on return values:
e There are a few ways to get more than 1 value returned
from a function:
o We could return an aggregate type (e.g. struct)
containing multiple values
o We could define parameters (very cautiously) that
allow us to hold a result
e Another choice is to return std: :optional -- this
means 0 or 1 values are returned.

https://en.cppreference.com/w/cpp/utility/optional

The function body (between the
{}’s) is where we do the actual
work.

This is where we define the
implementation of ‘how’ the
function achieves its goal.

Where the ‘goal’ or ‘action’ of the
function is well described by the
function name.

Local variables declared in the
function body follow normal
scoping rules.

int LoadBitmapFile(std::string

int result

// ...Load file logic here

return result:

Notes on function body:

Later on we’ll see that the function body usually is
defined in a source (.cpp) file.
o We generally do not put the implementation of a
function body in the header (.hpp) file.

32

The combination of the function JRGSERELoadBitmapFile(std::string image)§
name and the parameters / int result = -1;
make up what is known as a

‘function signature’ // ...Load file logic here ...

When we use a function (a.k.a. return result;
‘call a function’), the

combination of the name and Notes on Function Signature:
arguments we provide will call e The name and arguments in combination call a specific

f f function.
our tunction o For example:

m LoadBitmapFile(“./images/cpp.bmp”);

m This function call jumps to execute function with
‘some sort of valid’ string/char array version of
our function (more on that later...)

(Aside on compiling in debug) Occasional - Gotcha!

e Depending on your compiler | ¢ int LoadBitmapFile(std::string image){
or IDE environment --ifyou | 7 int result == —1;
compile your source with a 8
function that lacks a ‘return’ 5

statement -- it may still work
o That includes if there A
exist multiple return

paths. .
e Notes on Debugging:

Don't trust this however -- o Your compiler generally should issue a warning if
we need to have a return there is a missing return

statement if we are m Listen to those warnings!

// ...Load file logic here ...

expecting a result.

34

Congratulations -- We Understand the Pieces of a Function

int LoadBitmapFile(std::string image){
int result = -1;

That's really all there

IS to the basics!
e Return Type

e Function Signature return result:
o Descriptive Name

// ...Load file logic here ...

o Parameters
e Function Body

Stay tuned for more!

Function Call

What happens in the machine when we call a function?

Function Calls - From the Machine Viewpoint (1/5)

| think it’s useful to know what happens in the machine
when we call a function

So let’s work with a simple ‘add(int, int)’ function as
shown below.

37

e Simple program focusing on an ‘add’ function.

int add(int a, int b){
return a+b;

}

e \When we call a function in C++

o At the assembly level is is replaced with a ‘call’ instruction.
o Note the ‘addii’ portion of the call you can kind of figure out the
function signature (i.e. add(int, int))

.Cf1 startproc
pushq S%rbp
// definl «CF1 J€T CTa a7iser
int add(int .Cfi offset 6, -
return a+b, movq %rsp, %rbp
} .Cfi def cfa register

q $ SP
int main(){

—’

int result =[add(7,2);] _ ——"

std: *printf(,result):;

return 0;

}

39

Note that we also have to handle the arguments that we provide.

o We either need to reference them for somewhere, or ‘copy’ (the
movl instruction) data into registers.

o Again, you can see corresponding $2 and $7

int add(int a, int b){
return a+b;
} ¥ def cf

ubq

a _register

%rsp

int main(){

int result = add__.---""

std: *printf(,result):;

return 0;

}

40

e Exploring the assembly a bit more -- you'll Z3addii:

see the label for our add function. -LFBO:
.Cfi startproc

o The rest of our function body is then pushq Srbp

implemented. .cfi def cfa offset
.Cfi offset 6, -

o Including copying the arguments movq %rsp, Srbp
o (and also a ‘ret’ to return to our callsite) el ol el o
movl %edi, -4(%rbp)
int add(int a, int b){ iﬂgﬁ f’esi’rbg)f{’%gé’i
return a+b; movl -8(%rbp), %eax
Iy addl %edx, %eax
7/ g I SEpG e W i e O L P " popq %rbp
// Entry point to program .€T1 det €fa 7,
int main(){ ret

Nnoa Al - 14+~ = ~AA a1 Ay
One callsite of add below

iht result

/ /
/
&

std::printf(5 ,result);

return 0;

}

Recap: Machine Viewpoint

e The point of that exercise is for you

to see when we call a function:

o We usually jump somewhere in the
code.
m This at a minimum means we
need to store a return address
m \We also may need to copy or
otherwise access arguments.
m The combination of the
arguments and return address
make up part of the stack frame
e (Note: local variables in
function body are also part
of stack frame)

1 // add.cpp e A~ QOutput..~ YFilter..~ B Libraries
2 #include <cstdio>
3 add(int, int):
4 // Function declaration and B
5 // definition for 'add' 401126 push %rbp
6 int add(int a, int b){ 461127 5 %rsp, %rbp
7 return a+b;
8 } 40112a mov %edi, -0x4(%rbp)
9 —
10 // Entry point to program 40112d mov %esi, -0x8(%rbp)
11 int main(){ I
al7) 401130 mov -0x4(%rbp), %edx
13 // One callsite of 'add' below
14 int result = add(7,2); 401133 mov -0x8(%rbp), %eax
15 o v
16 std::printf("result:%d\n", result); 401136 add %edx, %eax
17
%rbp
18 return 0; 401138 pop I
43 ¥ 401139 ret
20

main:
40113a push %rbp

40113b mov %rsp, %rbp

Output of x86-64 gcc 12.2 (Compiler #1) £ X

= 40113e sub $0x10,%rs
A~ OWraplines = Selectall e

ASM generation compiler returned: © 401142 Hov. $0x2, %esi

Execution build compiler returned: ©
Program returned: 0 -
result:9 40114c call 401126 <add(int, int)>

401147 mov $0x7, %edi

401151 mov %eax, -0x4(%rbp)

Can generate assembly yourself from compiler:

Or otherwise a nice interactive tool for exploring assembIX:
https://godbolt.org/z/qdEc3G737 :

https://godbolt.org/z/qdEc3G737

Recursive Function Call

Revisiting Functions with Recursion

(Review) Calling functions within functions (Call stack)

e \When you call a function recall that
the arguments are copied and the

return address.
o Any local variable are also stored on the
call stack as well.
e |[f a function calls another function,
yet again, more functions are

placed on the call stack.

o Understanding this can be useful for
understanding how information moves
through your C++ programs.

o (It's also very useful for debugging!)

Stack Pointer ———

Frame Pointer >

top of stack

Locals of
DrawLine

stack frame
for

DrawSquare <

subroutine

Return Address

Parameters for
DrawLine

>

Locals of
DrawSquare

Return Address

Parameters for
DrawSquare

stack frame
for
DrawlLine
subroutine

https://en.wikipedia.orag/wiki/Call stack

44

https://en.wikipedia.org/wiki/Call_stack

Recursion Example 1

e (C++ supports recursive calls to
functions
e Here’s an example of computing

factorial recursively
o Note: We can also see that we have
multiple returns paths in factorial
m This is perfectly fine as long as
every path the function may exit
returns an integer.

Factorial

From Wikipedia, the free encyclopedia

In mathematics, the factorial of a non-negative integer n, denoted by n!, is the product of
all positive integers less than or equal to 7:

nl=n-(n-1)-(n—2)-(n—3)-----3-2-1.
For example,

5!=5-4-.3-2-1=120.

factorial(n){
(n<=1){

{

factorial(n-)*n;

main argc, * argv[]){

std: : << factorial(
std:: << factorial(
stz s << factorial(
std: : << factorial(
std:: << factorial(
std:: << factorial(
std: ¢ << factorial(

45

Factorial

From Wikipedia, the free encyclopedia

In mathematics, the factorial of a non-negative integer n, denoted by n!, is the product of
all positive integers less than or equal to 7:

Recursion Example 1 - Refactored

5!=5-4-.3-2-1=120.

e In that last example, | caught myself
copying & pasting the ‘std::cout’ line
factorial(n){

several times. Pl
o There’s a general principle called ‘Don’t factorial(n-1)*n;
Repeat Yourself' (DRY)

e So | couldn’t help myself but to
refactor the code to make it a little

cleaner.
o This is our motivation for functions as
well...modular pieces of code so we don't e 2 o8 o BRI B

have to repeat ourselves! !

46

Scope of Variables (1/2)

e Something else we want to keep in
mind is the scope (or lifetime) of

variables in functions.
o Stack allocated variables scope is defined main(int argc, * argvl]){
by the left and right curly braces{}
e See example on the right

o Note: Sometimes we talk about this in
terms of when the ‘variable’ is alive or ‘in
scope’

47

Scope of Variable Symbol Name is local to functions

e It's worth explicitly pointing out that
there are ‘different x variables’ in this

code snippet
e Observe ‘square’ is using the square(int x)f

X * X3

parameter name ‘X’ at line 16.
o This is fine because the scope of ‘X’ is
local to each respective function. main(argc, * argv[]){

e Thus ‘X’ is a local variable in each

function. std::cout << square() << std::
o (Thus we can reuse the name at line 23)

.
’

48

Creating Libraries with Functions

Where are they stored?

How are they organized?

Functions are part of our code

e \We can see this from our previous dive into assembly

o Functions have an ‘address’ where they are stored in memory.
m This means we can take the ‘address’ of a function
e (e.g. &add).
m But before we get into that idea -- | want to show an
example of how functions get organized in .cpp and .hpp
files.

401126

401127

40112a

40112d

401130

401133

401136

401138

401139

40113a

40113b

40113e

401142

401147

40114c

401151

401154

401157

add(int, int):

push %rbp

hov %rsp, %rbp

mov %edi, -0x4(%rbp)

mov %esi, -0x8(%rbp)

mov -0x4(%rbp), %edx
movv -0x8(%rbp), %eax
add %edx, %eax

pop %rbp

ret
main:

push %rbp

hov %rsp, %rbp

éub $Gx10,%rsp

mov $0x2;%esi

mov $0x7, %edi

call 401126 <add(int, int)>
ﬁovr %eax, -0x4(%rbp)

mov -0x4(%rbp), %eax

mov %eax,%esi

Function Declaration (1/2)

int add(int,int);

U1 SN -

e (Observe atline 5 we have a

‘Function Declaration’ Z Ao
o The includes the function signature ;’ int main(){
and return type 7
o There is no ‘body’ of the function 1€ £4R - '
The purpose of providing a = result =jadd(7.2);
function declaration in this cas.e IS [printf(EEEITEY
known as a forward declaration P
o We must parse our file from 15 eturn 0:
top-to-bottom -- thus forward 16 }
declarations allow the use of 17
add(7,2) to compile without issue. = - - =
So long as at the link stage of sl 0 : y Eve
compilation we find a definition , we 19 int add(int a, int b){
will successfully build a program. 30) return a+b;
7l |

A forward declaration is effectively a
‘promise to the compiler and/or linker’ that
you will in fact find the function definition
before everything is assembled.

OO NNOQUT KW N =
ig
(g |
Q
Q.
o
—_—
Ig
~r
'_J
—
S

int main(){
10 INe slte
11 int result =Jladd(7,2);
12
13 std::printf(,result);
14
15 return 0;
16 }
7/
19 int add(int a, int b){
20 return a+b;
21}

Creating Libraries (1/4)

e To the right I'm going to reveal a complete
program separated out into three files

g++ add.cpp main.cpp -0 prog

53

1
4
5>

~N o

(@]

To the right I’'m going to reveal a complete

program separated out into three files
o The header (add.hpp)
m Provides the forward declarations for our
function
m At the linking stage, we’'ll need an
implementation before we can use it.

g++ add.cpp main.cpp -0 prog 54

To the right I’'m going to reveal a complete

program separated out into three files
o The header (add.hpp)
m Provides the forward declarations for our
function
m At the linking stage, we’'ll need an
implementation before we can use it.
o The source for add.cpp
m Provides the implementation
m Note that the add.cpp also includes the
add.hpp -- this is effectively the forward
declaration being pasted in

OUTEA WN -

~

(@]

1
3
4
5
6

~l

int add(int a, int b){
return a+b;
}

(0]

(o]

g++ add.cpp main.cpp -0 prog

55

O E WN =

To the right I’'m going to reveal a complete

program separated out into three files
o The header (add.hpp)
m Provides the forward declarations for our
function
m Atthe linking stage, we’'ll need an
implementation before we can use it.
o The source (add.cpp)
m Provides the implementation
m Note that the add.cpp also includes the
add.hpp -- this is effectively the forward
declaration being pasted in
o Finally, the main.cpp
m We #include “add.hpp” which gives us
access to use add.cpp
m Solong as we link in the implementation of
add (from add.cpp, which will be an add.o
file), we can use the add function.

AN N

int main(){
std::cout << add(7,2) << std::endl;

recurn

~N O U B (C

.
’

O 00 ~

g++ add.cpp main.cpp -0 prog

Our First Library of Functions

e \We have effectively built a (tiny) library
at this point
e Separating functions into separate files

has a few advantages
o Reuse your functions in other projects
m (While maintaining and testing one
version)

o Hide your implementation details from users
Potentially speed up compilation

o Utilize only the functionality you need by
breaking up source into modules of related
functions

OS5 WN =

®))

~

Q
O

int main(){
std::cout << add(7,2) << std::endl;

.
’

g++ add.cpp main.cpp -0 prog

Separate Compilation of our Function
Library

e Qbserve to the below an example of
compiling our source (.cpp) files
individually

e Here is an example of separate
compilation and linking together the
object files (.0) together to build our final

executable.
mike:add library$ g++ -c add.cpp
mike:add library$ g++ -c main.cpp
mike:add library$ g++ add.o main.o -0 prog

mike:add library$./prog
9

58

(Quick Detour) Taking a deeper look (1/2)

Various tools allow
us to ‘inspect’ object
code such as
objdump -- we can
see the functions
available to ensure

they are there.

o What | am displaying
to you is we have a
global (‘g’) function
(‘F’) that has been
identified.

mike:add library$ objdump -t add.o

add.o: file format elf64-x86-64

SYMBOL TABLE:
0000000000000000 df *ABS* 0000000000000000 add.cpp

0000000000000000 d .text 0000000000000000 .text

0000000000000000 d .data 0000000000000000 .data

0000000000000000 d .bss 0000000000000000 .bss

0000000000000000 d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 d .eh frame 0000000000000000 .eh frame
0000000000000000 d .comment 0000000000000000 .comment

0000000000000000 ¢ F .text 0000000000000014 Z3addil

Notes on Library Building:
e If today is your first day with functions -- ignore these details
o Bookmark this slide and revisit it at a later date when you
build your first or second library :)

. . mike:add library$ objdump -t add static.o
e If we add the ‘static

qualifier to our function --

i i SYMBOL TABLE:
this eﬁeCtlvely makes the 0000000000000000 df *ABS* 0000000000000000 add static.cpp

function private to that 0000000000000000 .text 0000000000000000 .text

. 0000000000000000 .data ©000000000000000 .data
Source flle hecco alalararararararararararararars! hecco

o That means this is only .text 0000000000000014 ZL3addii
callable within the “.cpp’ file

add static.o: file format elf64-x86-64

it is imol ted i 0000000000000000 .eh_frame 0000000000000000 .eh_frame
ItIs implemented In. 0000000000000000 .comment 0000000000000000 . comment
You can take a peek at the

linker error on the

bottom-right In file included from main.cpp:4:
° Why? add_static.hpp:8:12: warning: ‘int add(int, int)’ used but never defined

o The reason you might want &] :Stakic dnt M(int &, int b):

mike:add library$ g++ -c add static.cpp
mike:add library$ g++ -c main.cpp

to do this, I.S if you have mike:add library$ g++ main.cpp add static.o -o prog
other functions that help In file included from main.cpp:4:
you ultimately implement add_static.hpp:8:12: warning: ‘int add(int, int)’ used but never defined
the function you want to 8 | static int add(int a, int b);
expose to a user. g
/tmp/ccOWRfE2.0: In function “main':
main.cpp: (.text+0xf): undefined reference to “add(int, int)'

Functions

How might we group related functions together?

A/)
>,
3
-

Grouping Functions Together (1/3)

e At some point you'll want to collect
related files into a single source file --
that is probably a good idea!

o So at the least, we can group files together in
one file

~N O OB

int add(int a, int b){ return a+b; }
int sub(int a, int b){ return a-b; }
int mul(int a, int b){ return a*b; }

O WN -

~J

g++ -Cc math.cpp

62

int math add(int a, int b){ return a+b; }
int math sub(int a, int b){ return a-b; }
int math mul(int a, int b){ return a*b; }

A C-like strategy is to add a uniform

prefix to each function name. int math add(int a,
o Thatis possibly reasonable if you foresee int math_sub(int a,
your functions being used in many different
languages.

int math mul(int a,

namespace mike{
t add(int a, int b){ return a+b; }

A better C++ approach is to group int sub(int a, int b){ return a-b; }

functions together in a namespace
o This makes it easy to avoid naming collisions
m (Someone else probably wrote an ‘add’
function at some point in a large
enough project)
o Refactoring becomes easier as well.
m If nested namespaces were to get too
long -- at a local scope you can use:
° mike;
e (Note: | recommend avoiding

‘Sucsirrlz)namespace’ at a global g++ JD C mat h . Cpp

[

A
5
6
7
9
0
1

1
1

nt mike::mul(int a, int b){ return a*b; }

(N

1t add(int a, int b);
int sub(int a, int b);
int mul(int a, int b);

OOoO~NO U B

64

(Aside) Example Usage

1
=
o
- J
4
B R
5
7
6
7
a
8

e And here’s a full example if you like:

mike:namespace$ g++ -c math.cpp
mike:namespace$ g++ -C main.cpp

mike:namespace$ g++ main.o math.o -0 prog
mike:namespace$./prog
9

std::cout << mike::add(7,2) << std::endl}

cLlu

3}

(Aside: Modules)

e Modules in C++ 20 should help resolve

some of the organization of source files.

o Note: ‘export’ appears to be a better way than
the previous ‘static’ trick | showed you to
determine what functions are exposed.

e Note: | am not yet a C++ modules expert,
but | will learn more as compiler support
continues advancing.

export module helloworld;
import <iostream>;

export void hello()
{

}

std::cout << "Hello world!'\n";

impoff héiioworld;

int main()
{

hello();
}

Example from:
https://en.cppreference.com/w/cpp/language/modules

66

https://en.cppreference.com/w/cpp/language/modules

Function (Member Functions)

Another way to ‘group’ functions -- Object-Oriented Programming

Obiject-Oriented (Actions + Attributes)

e Beyond grouping functions into namespaces
e We can group related functions and data
together to form a new user-defined data

type -- an object
o Typically we call the functions ‘member functions’
(other languages may call these ‘methods’)

m Member functions perform the ‘work’ based on
arguments provides, and possibly internal
state (member variables(

e Note: member variables sometimes also
called either fields or attributes.

Image{

0oid LoadImage(std::string filename);

private:
std::string filename;

std::string extension;

2 };

2
e
ks
A
5

-] N

O 00

oid Image::LoadImage(std::string filename){

nt main(){
Image img;
img.LoadImage (

return 0;

Vlrtual FunCtIOnS (or Virtual Member Functions) (1/3) ’ ‘.w:.‘;ﬁf LoadImage(std::string filename);

ro-

private:
std::string filename;

e Member Functions role become interesting [HER
12 };

when we start talking about inheritance.
e Member Functions can be ‘overridden’ in

derived classes.

o Observe the ‘virtual’ keyword on line ‘6’ signaling 2
that the function may be overridden 1 void Image::LoadImage(std::string filename){

o Observe the ‘override’ keyword at line ‘16" which std::cout << ;
specifically indicates a function will be overridden.

o In the image.cpp file (bottom-right image) you will
then see the implementation provided for the new
derived class

s> Bitmap : public Image{

LoadImage(std::string filename) ;

8fvoid Bitmap::LoadImage(std::string filename){
) std::cout << 5

69

1 void LoadImage(std::string filename);

private:

std::string filename;
std::string extension;

e When calling a specific ‘: : LoadImage’
member function, the correct implementation

will be called based on the allocated object.

o Classes and structs containing virtual functions
have a ‘virtual table’ of pointers to functions.

s> Bitmap : public Image{

‘;lLoadImage(std::string filename) override;

Image vTable All Functions

SO U B WN

Image* 1mg = n

Loadlmage Image::Loadlmage

~

img->LoadImagei

(@0

O

Bit ::Loadl
Bitmap vTable / 't'map:.L-oadimage
Loadlmage

70

For a full treatment of
Object-Oriented
Programming check out the
following videos or otherwise
my C++ collection on
YouTube

Going Further:
e Pure Virtual Functions
o (Forinterfaces)
e Friend functions
e Static member functions

YouTube

https:/Mww.youtube.com > watch ~ #

Back to Basics: Object-Oriented Programming - CppCon 2019

http://CppCon.org — Discussion & Comments: https://www.reddit.com/r/cpp/
— Presentation Slides, PDFs, Source Code and other presenter ...

YouTube - CppCon - Oct 17, 2019

I 6 key moments in this video v

YouTube
https://www.youtube.com > watch 3

Object-Oriented Programming in C++ - Amir Kirsh - CppCon ...
https://cppcon.org/ --- Back to Basics - Object-Oriented Programming in

?'“F’n‘m:b - 'L Cpp - Amir Kirsh - CppCon 2022 https://github.com/CppCon/CppCon2022 ...

YouTube - CppCon - Jan 21, 2023
. 10 key moments in this video v

YouTube

https://www.youtube.com » watch

Back to Basics: Object-Oriented Programming - Rainer Grimm

https://cppcon.org/ https://github.com/CppCon/CppCon2021 --- C++ is an
object-oriented programming (OOP) language but also supports generic ...

YouTube - CppCon - Dec 29, 2021

71

https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L

Function Composition

Functions are our building blocks

Functions Compose (1/3)

SOOI WN =

7
, . 8 int dotProduct(std::array<int, 3> a,
e Here's a somewhat silly 9 std::array<int, 3> b){
: 10 '
example Of CompOSIng 11 using namespace mike;
with functions. L i
o Thatistosay, we are using [yl T =9;
the result of one function as B » :
an argument into another. 16 for(int i=0; i < 3; ++i){
We know we a|ready have i 7 result = add(result,mul(al[i],b[i]));
1) %) 8 }
+
and operators for 19 return result;
primitive types 20 }
m Butthis type of code is |
still useful 22 int main(){
f ’ 3 ’ 23
" V\r/]ha:(n]: a(.jdt and ‘mul 24 std::array<int, 3> vi{l,2.3};
check for integer 25 std: :array<int,3> v2{2,4,6};
OVl {[OVR{IEIEN OIS 06 static assert(vl.size() == v2.size(),
2
28 std::cout << dotProduct(vl,v2) << std::endl;
PAS
30 return 0;
31 }

WN =

(@) L®) N =N

o0

O

10
11

1N

t dotProduct(std::array<int, 3>
>

a,
std::array<int, b){

using namespace mike:;

S

12

12
4D

14

Lﬂtrterml
int term2
int term3

I

=

c

f_l

—_
QO Q@
———

fa—
OTTUT
—— —
Pl —
N N

J
[

N N
N

)
(@) ®) W N

~

O

NNPNDNNN

(e}

}

- main(){

std::array<int, 3> v1{1,2,3};
std::array<int, 3> v2{2,4,6};

static assert(vl.size() == v2.size(),

std::cout << dotProduct(vl,v2) << std

return 0;

r:endl;

Something that becomes
more apparent here -- is that
our functions are very simple.

Simple -- but it also looks like

we may have all the
information at compile-time to
compute the result.

C++ 11 introduced just that
feature -- constexpr

-
8 int dotProduct(std::array<int, 3> a,

9 std::array<int, 3> b){

10 jé& ot e =4 e

11 using namespace m;ke;

12 Inl | =]

13 int terml = mul(a[®],b[0]);

14 int term2 = mul(a[l]l,b[1]);

15 int term3 = mul(a[2],b[2]);

16

17 return add(add(terml,term2),term3);

18 ¢

19

20 int main(){

21

22 std::array<int,3> v1{1,2,3};

23 std::array<int,3> v2{2,4,6},

24 static assert(vl.size() == v2.size(),)i
25

26 std::cout << dotProduct(vl,v2) << std::endl;
27

28 return

29 }

constexpr Functions

Compute at compile-time

https://en.cppreference.com/w/cpp/language/constexpr

constexpr return value

e \We can qualify our return type of a
function with ‘constexpr’

e This makes it possible (but not
necessarily guaranteed) that we can
evaluate an expression (i.e. return
value of a function, a computation,

square X
etc.) before your code runs! 05 o Wik
o From cppreference
o “The constexpr specifier declares that it is possible to
evaluate the value of the function or variable at

compile time. Such variables and functions can then main(argc, * argv[]){
be used where only compile time constant
expressions are allowed (provided that appropriate std::cout << square(~) << std::endl;

function arguments are given).”

77

https://en.cppreference.com/w/cpp/language/constant_expression
https://en.cppreference.com/w/cpp/language/constant_expression
https://en.cppreference.com/w/cpp/language/constexpr

https://godbolt.org/z/hhxcWj6Gq

constexpr functions (0/3

ﬁ 3 Ant dotProduct(std::array<1f‘-‘ii, > a,
We can actually improve this ‘ s s o RAITTIOVEIITE, (EE 5

L]
particular function we 11 using namespace mike;
. c 12 I
previously looked at with our S e e b
3 J 14 int term2 = mul(a[l]l,b[1]);
new ‘constexpr’ knowledge % AT renG - maviT BTl
16
17 return add(add(terml,term2),term3);
10
20 int main(){

22 std::array<int,3> v1{1,2,3};
23 std::array<int,3> v2{2,4,6};
24 static assert(vl.size() == v2.size(),)5

26 std::cout << dotProduct(vl,v2) << std::endl;

return

.
’

https://godbolt.org/z/hhxcWj6Gq

https://godbolt.org/z/hhxcWij6Gq

constexpr functions (1/3)

L /(main3.c;_)p A~ ROutput..~ YFiter..~ & Libraries / Overrides + Add new..
P W I t 2 #include <iostream> —
e Can eva ua e 3 #include <array> main: L
Some funCtionS g #include scasserts 401060 mov $0x1c, %eax
. . 6 //#include "math_constexpr.hpp" 401065 fet
at Cornp”e_t'me 7 namespace mike{ T e T TR T
8 constexpr int add(const int a, const int b){ return a+b; } i 401066 CcS nopw 0x0(%rax,%rax,1)
'th ¢ t J g constexpr int sub(const int a, const int b){ return a-b; } _GLOBAL__sub_I_main:
WI ConS eXpr 10 constexpr int mul(const int a, const int b){ return a*b; } 48 83 ec 08
. . s s O 401070 sub $0x8, %rsp
o This effectively | FL 0 40 %0
13 | constexpr intjldotProduct(const std::array<int, 3> a, I 401074 mov $0x404041,%ed1
makes our 14 const std::array<int, 3> b){ B B2 3¢ 51 @2 : ;)
t th 15 // Use our specific call to 'add' 401079 call 401040 <std::ios_base::Init::Init()@plt>
program o € 16 using namespace mike; e
H ‘ ’ 9 P X 40107e mov $0x404038, %edx
ht 17
rghta no-op , e 41 40 40 00
o 19 constiint. termi:= mul{a[a];b[e]); 401083 mov $0X404041,%esi
and |tJUSt 19 const int term2 = mul(a[1],b[1]); £ 50 10 40 ¢
20 const int term3 = mul(a[2],b[2]); 401088 mov $0x401050,%edi
returns 28. 21 40 53 c4 o0
Th k . th 22 return add(add(terml,term2),term3); 40108d add $0x8, %rsp
o e key is the 2)
y 24 401091 jmp 401030 <__cxa_atexit@plt>
1 H .) S = S
25 int main(){ 4
ConSteXpr used 26 401096 CS nopw OxO(%rax,%rax,1)
th t 27 std::array<int, 3> vi1{1,2,3};
On e re Urn 28 std: :array<int, 3> v2{2,4,6}; C' HEOutput (0/0) x86-64gcc11.1 j -cached(345848) | Compiler License
. 29 static_assert(vl.size() == v2.size(),"vl.size()!=v2.size() ");
type q uallfler 30 Output of x86-64 gcc 11.1 (Compiler #1) & X
) 31 return dotProduct(vi,v2); A~ [OWraplines = Selectall
=2 } ASM generation compiler returned: ©
Execution build compiler returned: ©
Program returned: 28

79

https://godbolt.org/z/hhxcWj6Gq

The purpose of this slide is again to show you -- if | break

my program ino small composable pieces, it becomes more

clear when | can make something constexpr.

\

©O~NOOOsWNR

WWWNNNNNNNNNONRRRBRRRRRR B
NP OOW®ONONAWNRPROO®ONOONHAWNERO®

// main3.cpp
#include <iostream>
#include <array>
#include <cassert>

//#include "math_constexpr.h

namespace _mike{
constexpr int
constexpr int
constexpr int

add(const int a, const int b){
sub(const int a, const int b){
mul(const int a, const int b){

}

constexpr int dotProduct(const std::array<int, 3> a,
const std::array<int, 3> b){

// Use our specific call to 'add'
using namespace mike;

const int terml = mul(a[@],b[0]);
const int term2 = mul(a[1],b[1]);
const int term3 = mul(a[2],b[2]);

return add(add(terml,term2),term3);

return a+b; }
return a-b; ¥
return a*b; ¥

static_assert(vli.size() == v2.size(),"v1l.size()!=v2.size() ");

i

int main(){
std::array<int, 3> vi1{1,2,3};
std: :array<int, 3> v2{2,4,6};
return dotProduct(vi,v2);

}

A~ ®ROutput..~ VFilter..~ B Libraries 4 Overrides
main:

401060

401065

- 401066

401070

§ 401074

401079

40107e

401083

401088

40108d

401091

401096

mov $0x1c, %eax

ret

CS nopw Ox@(%rax,%rax,1)

_GLOBAL__sub_I_main

sub $0x8, %rsp

mov $0x404041, %edi

+ Add new..

call 401040 <std::ios_base::Init::Init()@plt>

mov $0x404038, %edx

mov $0x404041, %esi

mov $0x401050, %edi

add $0x8, %rsp

jmp 401030 <__cxa_atexit@plt>

CS nopw OxO(%rax,%rax,1)

C' HEOutput (0/0) x86-64gcc11.1 j -cached(345848) | Compiler License

Output of x86-64 gcc 11.1 (Compiler #1) & X

A~ OWraplines = Selectall

ASM generation compiler returned: ©
Execution build compiler returned: ©
Program returned: 28

80

https://godbolt.org/z/hhxcWj6Gq

Note that making something ‘constexpr’ also implies it is inline -- you have the computed value!
Core Guideline(s):

O

O

https://isocpp.qithub.io/CppCoreGuidelines/CppCoreGuidelines#f4-if-a-function-might-have-to-be-evaluated-at-compile-time-de

clare-it-constexpr

https://isocpp.qithub.io/CppCoreGuidelines/CppCoreGuidelines#f5-if-a-function-is-very-small-and-time-critical-declare-it-inline

pr.hpp"

constexpr int add(const i
constexpr int sub(const i
constexpr int mul(const i

a, const int b){
a, const int b){
a, const int b){

return a+b;
return a-b;
return a*b;

main:
b8 1c 06 00 00

401060 mov $0x1c, %eax

c3
401065 ret

66 2e of 1f 84 00 00 00 00 00
401066 CcS nopw 0x0(%rax,%rax,1)

_GLOBAL__sub_I_main:
48 83 ec 08

z

5

6 //#inclu
7 namespag
8

C)

10

11: .}

12

13 constexpr int dotProduct(const std::array<int, 3> a,

14 const std::array<int, 3> b){
15 // Use our specific call to 'add'

16 using namespace mike;

17

18 const int terml = mul(a[@],b[0]);

19 const int term2 = mul(a[1],b[1]);

20 const int term3 = mul(a[2],b[2]);

21

22 return add(add(termi, term2),term3);

23]

24

25 int main(){

26

27 std::array<int, 3> vi1{1,2,3};

28 std: :array<int, 3> v2{2,4,6};

29 static_assert(vl.size() == v2.size(),"vl.size()!=v2.size() ");
30

31 return dotProduct(vi,v2);

32 §

401070 sub $0x8, %rsp
bf 41 40 40 00
401074 mov $0x404041, %edi

e8 c2 ff ff ff
401079 call 401040 <std::ios_base::Init::Init()@plt>
ba 38 40 40 00

40107e mov $0x404038, %edx
be 41 40 40 00

401083 mov $0x404041, %esi
bf 50 10 40 00

401088 mov $0x401050, %edi

48 83 c4 08
40108d add $0x8, %rsp
e9 9a ff ff ff
401091 jmp 401030 <__cxa_atexit@plt>
66 2e of 1f 84 00 00 00 00 00
401096 cs nopw 0x0(%rax,%rax,1)

C' HEOutput (0/0) x86-64gcc11.1 j -cached(345848) | Compiler License

Output of x86-64 gcc 11.1 (Compiler #1) & X

A~ OWraplines = Selectall

ASM generation compiler returned: 0
Execution build compiler returned: ©
Program returned: 28

81

https://godbolt.org/z/hhxcWj6Gq
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f4-if-a-function-might-have-to-be-evaluated-at-compile-time-declare-it-constexpr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f4-if-a-function-might-have-to-be-evaluated-at-compile-time-declare-it-constexpr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f5-if-a-function-is-very-small-and-time-critical-declare-it-inline

©)

into a register :)

By the way -- this is essentially all of the assembly code for our program
Note there’s no call to our ‘dotProduct’ function -- just moving the value 28

constexpr int add(const int a, const int b){
constexpr int sub(const int a, const int b){
10 constexpr int mul(const int a, const int b){

4
L

6 //#include "math_cons
7 namespace mike{

8

9

11,)

12

13 constexpr int dotProduct(const std::array<int, 3> a,
const std::array<int, 3> b){

14

15 // Use our specific call to 'add'
16 using namespace mike;

17

18 const int terml = mul(a[@],b[0]);
19 const int term2 = mul(a[1],b[1]);
20 const int term3 = mul(a[2],b[2]);
21

22 return add(add(termi, term2),term3);
23 [

24

25 int main(){

26

27 std::array<int, 3> vi1{1,2,3};

28 std: :array<int, 3> v2{2,4,6};

29 static_assert(vl.size()

30

31 return dotProduct(vi,v2);

32 ¥

H

v2.size(),"vl.size()!=v2.5ize() ");

main:

401060 mov $0x1c, %eax

401065 ret
i 401066 cs nopw 0x@(%rax,%rax,1)
_GLOBAL__sub_I_main:

401070 sub $0x8, %rsp

401074 mov $0x404041, %edi

=

401079 call 401040 <std::ios_base::Init::Init()@plt>
40107e mov $0x404038, %edx

401083 mov $0x404041, %esi

401088 mov $0x401050, %edi

40108d add $0x8, %rsp

401091 jmp 401030 <__cxa_atexit@plt>

401096 cS nopw 0x0(%rax,%rax,1)
C' HEOutput (0/0) x86-64gcc11.1 j -cached(345848) | Compiler License
Output of x86-64 gcc 11.1 (Compiler #1) & X

A~ OWraplines = Selectall

ASM generation compiler returned: ©
Execution build compiler returned: ©
Program returned: 28

82

https://godbolt.org/z/hhxcWj6Gq

https://godbolt.org/z/hhxcWij6Gq

(Aside) pure functions

e Functions that don’t have side effects (i.e. immutable functions) in the

argument or return value are known as pure functions
o These are good, because they are not dependent on run-time ‘state’, all values could be
known at compile-time
o You can think of pure functions as most of the common math functions you started out learning
in school
m The same inputs generate the same output values.
m Note: | believe many cmath functions in either C++23/26 are becoming constexpr

constexpr int add(const int a, const int b){ return a+b,
constexpr int sub({const int a, const int b){ return a-b,
constexpr int mul{const int a, const int b){ return a*b;

T I S

83

https://godbolt.org/z/hhxcWj6Gq

Function Parameters

Understanding pass-by-value and pass-by-reference (and ‘const’)

Quick Check: What do you think the value of x will be? (1/2)

e \What will the value of x be?

*argvl]){

X =93
func(x);
std::cout << << X << Sstd::endl;

85

What will the value of x be?

mike:3$ g++ -std=c++17 -g value.cpp -0 prog

Hmm, why is this? (Next slide!)

main(argc,

uncix),

std:

’
rcout <<

*argvl]){

<< X << Sstd::endl;

86

Pass by Value (Also known as pass by ‘copy-value’)

e In C++ we have control over what
happens when we pass in a variable
into a function.

e Atline 24, we actually get a ‘copy’ of

X.

mike:3$ g++ -std=c++17 -g value.cpp -0 prog

mike:3$./prog main (argc, * argv[]){

X is: 9

X =93
func(x);
std::cout << << X << std

87

(Review) & Operator (‘Address of function’)

e The ampersand operator (‘&’) in C++
retrieves the address of a variable in
memory.

e We can use it to figure out where main(int arge, char* argv]){
exactly in memory (i.e. the address)

our variables are located.

o You can thus see below, the hexadecimal std::cout << << X << std::endl;
) ’ std::cout << << & << std::endl;
address in memory of ‘X

mike:3$ g++ -std=c++17 -g ampersand.cpp -0 prog
mike:3$%$./prog

x's value is : 9
X's address is: Ox7ffffl171d5f4 88

(Aside) Using & to understand pass-by-value

e Notice below that the addresses are
different

e Thus, if the address is different, than
when we modify =

func(x){

main(argc,

X =9
std::cout << << &X << std::endl;
func(x);
std::cout << << X << std::endl;

mike:3$ g++ -std=c++17 -g value address.cpp -0 prog

X adéress 182 Ox7ffeblbf7354
of x address 1is: Ox7ffeblbf732c

std::cout << << & << std::endl;

89

(Aside) Quick Tip for ‘&’

e & is an operator (i.e. function) for getting the ‘address of’ a variable or function
that exists.

90

Pass by Reference (1/2)

e In C++, if you want to modify the value,
you can instead ‘pass by reference’
e Notice very subtly the function signature

at ||ne 16)s(ti::cout << << & << std::endl;
o void func(X)
m Think of the int& as a ‘reference type’ S S SRS
o The ampersand states that we are passing ?Egé){)c(;l;t;« << 8 << std:zendl;
an actual reference to something that exists. By EEalE <& g == ghizyendl;
o The parameter is thus an ‘alias’ to something '
that exists.

o Now the actual ‘X’ in memory will be modified

91

mike:3%$./prog
X address 1is: Ox7ffeb7e42514

referencing x at same address: 0x7ffeb7e42514
X 1S5:. 9999

In C++, if you want to modify the value,
you can instead ‘pass by reference’
Notice very subtly the function

func(& x){

std::cout << << &X << std::endl;

signature at line 16
o void func(X)
m Think of the int& as a ‘reference type’ et arye sharsmr I}
o The ampersand states that we are passing 252;?2??’« << &x << std:endl;
an actual reference to something that exists. std::cout << << X << std::endl;
o The parameter is thus an ‘alias’ to something '
that exists.

o Now the actual ‘X’ in memory will be modified

92

Why Pass by Reference?

e Reason 1:
o Sometimes we want to modify the actual

variable being passed in! TURERLE S
e Reason 2: X .
o We avoiding making a copy of our data = o000 s sty
m You'll notice the performance if you
pass big or expensive to copy data main(int argc,
structures X = 9;
s (e.g. a vector of 10,000,000 big R s ey

std::cout << << X << std::endl;

objects would all have to be copied)

e Reason 3:
o It's a bit safer than a pointer -- meaning

it's a lot harder to get a NULL value mike:3$./prog
X address is: 0x7ffeb7e42514

referencing x at same address: Ox7ffeb7e42514
X is: 9999

const reference parameter

e Just like when we declare variables
with ‘const’ we can also do so for our
function arguments.

func(

o |n thIS Case, we can.: itg::cou’;c s< << &x << std::endl;
o const int &x
o This means we cannot modify that value main(int argc,
of x -
. . . std: :cout << << &X << std::endl;
e If you try to run this example, it will ;ggffcgut B e s rendi

not let you, because you are trying to
reassign the value of the int that you
F)EﬂfoSEE(j if] tf]EB flJf](:ti()r]. mike:3$ g++ -std=c++17 -g pass by const reference.cpp -o prog

pass_by const_reference.cpp: In function ‘void func(const int&)’:
pass_by const reference.cpp:20:7: assignment of read-only refer

const reference parameter - Why would we do this?

e Again we pass-by-reference to avoid

a copy
o The ‘const part is a ‘security’ (i.e. une)
contract) that ensures that whatever data 1 P 5 G < e s

X =

we are passing into that function will not
be mutated (i.e. change its state in
anyway).

e As we work with bigger data e (cgut % << & << std:endl;
structures, this is more important!

main(argc,

std::cout << << X << std::endl;

mike:3$ g++ -std=c++17 -g pass by const reference.cpp -o prog
pass_by const_reference.cpp: In function ‘void func(const int&)’:
pass_by const reference.cpp:20:7: assignment of read-only refer

-

oOuUTh WN

Other Tips -- Take a look at std::span |[ERE S R ALY
for(int i=0; i < size; ++i){
7 array[i] = 1;
e Pass-by-Pointer (line 5) is still pass-by-value J
o (i.e. making a copy of the pointer) et | g
vold .. Span<int= \'A
o Passing in a pointer copies the pointer, but both 12 fo r(i;z:g&n;Zm: airgg){ = &
pointers point to the same underlying address -- thus 13 elem = 1;

we can modify the value. }

e Prefer in Modern C++ codebases however to
use std::span (C++20) as an argument in your
functions if you do have to pass a pointer and a

int main(){

) 2 int stackArrayl[5];
Size 22 SetToOne(stackArrayl,5);

o std::span is a pointer and a length

) std::array<int,5> stackArray2;
o Can handle dynamic data structures as well. : std::span<int> mySpan{stackArray2};

SetToOne(mySpan) ;

https://en.cppreference.com/w/cpp/container/span

Function Polymorphism and Overloading

Function with the same name, with potentially a different implementation
(often because of different parameter types)

Function polymorphism

e In C++, we can reuse the same name
for multiple functions where the

parameters are different. square(int x){
o Note: In languages like C we have to x ::Coi*xf
uniquely name our functions
e \When we make a call to the function L are (oot i << std::endl;

X*X;

(i.e. square), C++ can automatically
deduce which function to call based

main(argc, * argv[]){

on the data types or arguments used. square(’);

square()i

o Thisis a type of function polymorphism

98

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)#:~:text=A%20function%20that%20can%20evaluate,which%20such%20specializations%20are%20made.

(Aside) Argument Dependent Lookup (ADL)

int square(int x){
return x *x X;

e C++ compilers perform something
known as argument-dependent lookup

(ADL) when resolving which function

o https://en.cppreference.com/w/cpp/language/
adl float square(float x){

o You can read through this if you want a bit .

. . return x *x X;

more detail on how function calls are
resolved (or which version of square will be
called if we pass in a ‘double’)

o ADL specifically helps us figure out which
functions to call within scope.

99

https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/adl

Function Overloads

Sometimes it’s useful to provide
different ‘types’ and different
number of parameters into
functions but use the same
function name.

This is known as function
‘overloading.

Here is an example with two
functions with the same name,
but different parameter lists.

square (X){
M X T X
square (X - check){

(CheCK & X <0)%
Std:2cOUt <<

B

T ¥ 9

main(){

std::cout << square(-5) << std::endl;

std::cout << square(-5,

) << std::endl;

Function Default Parameters

e Note: We can also provide default
parameters to our functions when

it makes sense

o i.e. if we have some option that is not
always needed, then provide a default
value.

o This is sometimes preferred versus 13 int main(){
creating lots of different functions --as |
it may be preferable to have one
implementation.

o There’s a better tool for specific
implementations if the implementation
is dependent on types however (next
slide on templates!)

OUTE WN =

int square(int x, |bool
if (check && x <0){
std::cout <<

7
o}
9

std::cout << square(-5) << std::endl;
std::cout << square(-5,) << std::endl;

101

Function Templates

e Templates are a mechanism
for generating code and
working with generic types.

e Templates (and Concepts)

are a big topic in C++
o | can again refer you to talks
from the past and this current
conference on the topic.

=
L
Bnclroaac
Templates
NICOLA! JOSUTTIS

¥l:01:50 ;g A

Back to Basics: Templates in C++ - Nicolai Josuttis - CppCon ...

YouTube - CppCon
Oct 26, 2022

10 key moments in this video A

From 02:42

Function
Templates

From 06:40 From 12:28 From 19:12 From 21:
Template Function Template Constrain Multipl >
Instantiation Templates Parametc

Back to Basics: Templates (part 1 of 2) - Bob Steagall ...

YouTube - CppCon
Feb 2, 2022

10 key moments in this video v

Back to Basics: Templates (part 1 of 2) - Andreas Fertig ...

YouTube - CppCon
Sep 25, 2020

10 key moments in this video v

Back to Basics: Templates (part 2 of 2) - Bob Steagall ...

YouTube - CppCon
Feb 3, 2022

Functions & State

Understanding lifetime and state in function-like functions

Functions and State

e No State

o We've seen some previous examples of ‘pure’ functions (using constexpr)
o These functions compose well
e State Changes

o We've seen some functions that allow for mutation
o (passing by reference or pass-by-pointer) that allow for mutation.

e Holding State

o We have seen how objects can be used to hold state and even change behavior of object your
dynamic dispatch (run-time type polymorphism)

104

mike:3$ g++ -std=c++17 -g static.cpp -0 prog
mike:3$./prog

foo called: 1 times

Extending local lifetime with ‘static’ BECEERLT

foo called: 3 times

e Thereis a way to ‘extend’ the
lifetime of a variable within a

function
o The variable is effectively a global foo(int x){
variable
o The scope is still within the function counter = counter + °;
however. std::cout << << counter <<

e This means that when you call a
function, it will retain its value.
e This is done with the keyword
‘static’
o Notice how ‘counter’ does not get
redeclared each time.
o ltis allocated exactly once in the

compiled code, and C++ retains the
local variable ‘counter’ in foo(). 105

struct Functor{
public:

O E WN -
wn
o

Functors (Function Objects)

int operator() (){
calls++;

O 00

e Functors are ‘function objects’

o You are ‘allocating’ some separate 10 return calls;
persistent memory to hold ‘state’ for % }
your function 13 Jpublic:
m This memory lives (i.e. is in 141 int calls{0};
scope) for the duration of the]ié L
objects lifetime, as opposed to HESTRS C I IOR]
the call stack. 8

_ ‘ , o 19 JFunctor stateful variable;
o This way you can ‘save’ state within 20 -

specific invocations of your functor. 21 |stateful variable();
22 |stateful variable();
23 |stateful variable();

24

25 std::cout <<

26 << stateful variable.calls << std::endl;
27

28 return 0;

A

Evolving Functors to ...

e Here's another example of a
‘functor’ that ‘captures’ (i.e. stores)
the last value in a member variable
called lastResult.

o Again, this code is perfectly reasonable
o But how ‘modifiable is this functor?
m What if | want similar functors?
m What if | don’t want the scope to
be ‘global’ ?

struct PrintFunctor
int lastResult{-1};
void operator() (int
lastResult=n;
std::cout << n <<

n){

7
8
9
0
1

int main(){
std::vector<int> v{l,
PrintFunctor pf;

for(auto elem: v){
pf(elem);
}

1,3,2,5,9,functor last result:9

107

Lambda’s (Effectively Functors behind the scenes)

AULO brint_v = [&lastResult] (int n) {

e Lambda’s are ‘unnamed’ functions.

o Lambda’s are a convenient way for us to 29 lastResult=n:
create ‘local’ functions std::cout << n <<
m Behind the scenes they are ¥
implemented as functors (as they 33 std::for_each(begin(v), end(v), print_v);

can carry state)
e |ambda functions tend to be more

local and help us break problems into

smaller chunks
o If you think you'll use the lambda more
than once -- then it's okay to make it a
function

std::cout << << lastResult << std::endl;

(Same code as previously shown)

108

More on Lambda

e |Lambda’s are available in
C++11 and beyond

o They can very much help
clean up your code.

e Lambda’s themselves are
quite nice -- but are yet
again another separate
talk.

Back to Basics: Lambdas - Nicolai Josuttis - CppCon 2021

YouTube - CppCon
Dec 29, 2021

10 key moments in this video A

From 01:41 From 08:00 From 11:09 From 16:56 From 22:55
Why Do We Have Lambda Sorting Generic Lambdas Countifs
Lambdas

Back to Basics: Lambdas from Scratch - Arthur O'Dwyer ...

YouTube - CppCon
Oct 8,2019

= i 10 key moments in this video v

C++ Lambda Idioms - Timur Doumler - CppCon 2022

YouTube - CppCon
Nov 10, 2022

10 key moments in this video v

Higher Order Functions (and more)

Passing Functions as Arguments

N =

tyaedef int (*PFhIntegerOperationS)(1mt, int);

NN Ll.).

Function Pointers

int add(int x,int y) { return x+y; }
int multiply(int x, int y){ return x*y; }
With lambda’s -- we open

the door to ‘pass
functions around’ as
arguments in other

int main(){

std::function<int(int,int)> op;

A WNEFEOOONOU
I
=
t

functions. 5 std::cout << << std::endl;
. 6 int n;
Of course this has been §§ std::cin >> n:
: O 8 if(n==1){
possible with: s o midis

o function pointers 0 }else if(n==2){
o std::function -- available ,1> . op = multiply;
with C++ 11 and beyond 3 int x,y:
4 std: fein =3 X3
o std: :€in >> y;
) std::cout << << op(x,y) << std::endl;
return 0;

N NN N NN NN N bt et ot ot ot pod ol o o

o0
-

OV WN

Higher-Order Functions (HOF)

int add(int x,int y) { return x+y; }
int multiply(int x, int y){ return x*y; }

e A specific use case std::function, is to

pass it as a function parameter
o This is known as a higher order function

e Observe how we can pass in a

O O 00

12 void ByTwo(std::function<int(int,int)> operation,
3 std::vector<int>& data){

for(auto& elem: data){

std: :function that affects the 16 g a1
behavior of the function ‘ByTwo’ in this SRS
example —
20 int main(){
e Note: std: :vector<int> v{1,3:5.7,9,311);
o std::function .is a bif[more powerful than == S Two (200 VT
regular function pointers ByTwo (multiply,v);
m It's cleaner to type and easier to search]
for for(auto elem: v){

_ std::cout << elem << std
m It can hold any callable object

e |t may allocate memory

WN =

Storing Functions (in tables)

) i %

o

return x+y; }

int add(int x,int y)
] return x*y; }

nt multiply(int x, int y)

{
{

e In a sense when we pass functions
into other functions we are storing

the function behavior
o Same thing we saw earlier

D O 00

int main(){

std::function<int(int,int)> operations[2]

e We can of course store functions in 3 operations[0] = add;
other data structures like an array ' operatdonsil] = saulEiply;
o :I'his can be_inc,:rediply useful fora} 6 for(auto op: operations){
command like deggn patf[ern or ‘FIFO std::cout << op(7,2) << std::endl;
queue’ for executing a series of
functions.

o I've found this idea also very useful for
generating tests

113

Summary

Nearly the end of our tour!

Summary

e \We have touched on a lot of topics with functions -- but not yet all!
o Primarily we have looked at functions as building blocks in our program
o We have looked at how to organize functions into groups
o We've talked a bit about ‘state’ of functions

e \We can also think of functions

o As forms of ‘control’ in our program
m i.e. Coroutines are in C++20!

e There's plenty more to continue learning about functions!
o Function Templates
Testing of Functions
Friend Functions (as related to Object-Oriented Programming)
Remote Procedure Calls
Again: | recommend checking out more of CPPCON'’s Back to Basics Talks ongoing this year
and previous years (Keywords: Object-Oriented Programming, Lambdas, Templates)

O O O O

115

YouTube

[hvewni.youtube.com > watch
C++ Coroutines From Scratch - Phil Nash - ACCU 2023

-- https:; accuconference.org/ YouTube Videos Filmed, Edited ... C++
Coroutines from scratch - Phil Nash - Meeting C++ 2022. Meeting

YouTube - ACCU Conference - Jul 6

Talks on Coroutines

10 key moments in this video v

a }"ouTul?e'

e MW yout watch $

Implementing a C++ Coroutine Task from Scratch - Dietmar Kiihl
YouTube Videos Filmed, Edited & Optimised by Digital Medium:

https:/

e Last year’s Cppcon Coroutines from Scratch by
Phil Nash, and several other folks have given nice
talks.

s.digital-medium.co.uk #accuconf #programming #coroutines.

YouTube - A

8 key moments in this video v

YouTub
o uTube

» wiatch

Your browser can't play this video. Learn more. Open App. C++ ... C++
- Phil Nash - Meeting C++ 2022. 4.9K views - 8

Coroutines from

YouTube - M

10 key moments in this video v

YouTube

htt

wweiyoutube.com » watch
Applied C++20 Coroutines - Jim Pascoe - ACCU 2023

ACCU Conference«3.2K views - 1:30:15 - Go t
Intuition - Roi Barkan - CppNow 2023. CppNowe2.5K views - 1:34:59 - Go...

channei - C++ Coroutine

YouTube - ACCU Co

10 key moments in this video v

YouTube

hitps

tube.com > watch

C++ Coroutines, from Scratch - Phil Nash - CppCon 2022

C++. __Videos Filmed & Edited by B
YouTube Channel Managed by Digital Medium Ltd https/;

ww.BashFilms.com

vents.digital

YouTube

10 key moments in this video v

th: conference

Bonus (If Time Remains) Function Tips

A few quick tips and ideas for better functions

Function Naming Conventions

e It's a good idea to give useful names to your function.
e Names should be descriptive enough to describe ‘the action’ the function is
doing.
o std::vector<uint8 t> Bitmap(); --bad (‘I need more information’)

o std::vector<uint8_t> GetBitmap()
o std::vector<uint8 t> GetBitmapAsByteVector() -- best (‘Documents action and value returned’)

e It may also be useful to uniformly name functions as well
o ie.
m Include the word ‘Bitmap’ in all related functions operating on Bitmaps.
m Some functions (even in the same namespace) prefix with some letters

118

Functions Should Have One Job

e Because the function returns at most ‘1’ value, that’s an indicator that our

function should only do one thing
o e.g.Inthe Standard Template Library (STL) pop() only removes an element, when in fact it
could probably also return the value.
m This makes functions more composable if you want a ‘popAndGetValue()’ function
m This makes the function more testable on expected behavior
o Core Guideline:
https://isocpp.qithub.io/CppCoreGuidelines/CppCoreGuidelines#f2-a-function-should-perform-
a-single-logical-operation

119

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f2-a-function-should-perform-a-single-logical-operation
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f2-a-function-should-perform-a-single-logical-operation

Keep Functions Short

e “Short” here is subjective to one's domain and experience
o |llearned < 50 lines -- ‘50’ was arbitrary and probably the right number in university in which programs are not
massive.
m |'ve seen perfecitly fine functions 1,000 lines long.
e Initialization code of some system tends to be the common use case.
o The point is -- if you have too much code in a function, it may be doing either:
m Too many jobs
m Be overly complex and difficult to maintain
e i.e. Ifthere are no git diff’s for years on a massive function -- is it because everyone is too afraid
to modify that code? (Or is it actually perfect?)
o Core Guideline:
m https://isocpp.qgithub.io/CppCoreGuidelines/CppCoreGuidelines#{3-keep-functions-short-and-simple
o For Folks who want more performance -- consider inlining
m Core Guideline:
https://isocpp.qithub.io/CppCoreGuidelines/CppCoreGuidelines#f5-if-a-function-is-very-small-and-time-c
ritical-declare-it-inline

120

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f3-keep-functions-short-and-simple
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f5-if-a-function-is-very-small-and-time-critical-declare-it-inline
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f5-if-a-function-is-very-small-and-time-critical-declare-it-inline

Function Testing Conventions

e It's a good idea to then ‘test’ function as you write them as well

o Test-Driven Development dictates that you write the test first, then implement the function
body.

e Functions are also great to use as ‘pre’ and ‘post’ conditions (i.e. contracts)

121

Passing lots of parameters to your functions?

e It's probably best to pass in a ‘struct’ or perhaps a ‘pointer to a struct’
e How many is ‘a lot’

o Depends. I'll say around 5 is when | personally get nervous and really have to think.
e Here's one strategy -- pack everything into a struct

o void myFunction(OptionsStruct options);

e Another
o void myFunction(OptionsStruct* options);
o Pass in as a pointer (or smart pointer) to ensure we’re always just passing in an ‘8-byte’
address (on a 64-bit architecture).

122

Octobher01-06

The C++ Conference | AUrOIQ, Eujnrudu, USA

@/ﬁ:/ppcnn

Back To Basics
Functions

Thank yout!

Cppcon

The C++ Conference

2023 A

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:

www . youtube.com/c/MikeShah

14:0-15:00 MDT
Mon, Oct. 1 2023

60 minutes
Introductory Audience

MIKE SHAH

e

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

